Linear Algebra 2023 Fall



Go to today! ✈️    Go to homework! ✈️



Homework

# Date Topic TA Slides Video
HW0 Colab 承櫸, 鳴鐸
HW1 9/22 - 10/4 Cycle Detection 承櫸, 鳴鐸
HW2 10/06 - 11/03 Hill Cipher 品翔, 卓耀
HW3 11/03 Transform and Its Application 冠廷, 元翔
HW4 11/17 PageRank 元翔, 品翔
HW5 12/01 Linear Regression 卓耀, 徐行
HW6 12/15 SVD for Image Compression 鳴鐸, 承櫸
Note: 🚧  implies the material is not available now.
Go to top! 🏠

Course Materials

review 🔍 overview basic concept optional
def. definition ex. example pf. proof thm. theorem
review
🔍 overview
basic concept
optional
def. definition
ex. example
pf. proof
thm. theorem
Chapter 1
DueDate Topic YouTube Textbook PDF PPT
1 linear
9/6 def. Linear System
9/6 ex. Are they Linear System?
9/6 ex. Derivative and Integral are Linear Systems
2 course introduction
yourself Linear Algebra v.s. Compulsory Courses (optional)
yourself Course Overview (optional)
3 vector
yourself Vector 1.1
yourself Properties of Vector 1.1
4 system of linear equations
9/13 System of Linear Equations 1.3
9/13 System of Linear Equations = Linear System 1.3
5 matrix
9/13 Matrix 1.1
9/13 Properties of Matrix 1.1
9/13 def. Diagonal, Identity, Zero Matrix 1.2
9/13 def. Transpose 1.1
4 system of linear equations
9/13 Matrix-Vector Product 1.2
9/13 Matrix-Vector Product = System of Linear Equations 1.2
9/13 ex. Matrix-Vector Product (Example) 1.2
9/13 Properties of Matrix-Vector Product 1.2
9/13 Standard Vector 1.2
6 solution
9/13 Solution of System of Linear Equations (high school) 1.3
9/13 🔍 Solution of System of Linear Equations (this course)
9/13 def. Linear Combination 1.2
9/13 Linear Combination v.s. Solution 1.2
9/13 ex. Linear Combination v.s. Solution (Example 1) 1.2
9/13 ex. Linear Combination v.s. Solution (Example 2) 1.2
9/13 ex. Linear Combination v.s. Solution (Example 3) 1.2
9/13 def. Span 1.6
9/13 ex. Span (Example) 1.6
9/13 Span v.s. Solution 1.6
9/13 thm. Span (Theorem of Useless Vector) 1.6
9/13 pf. Span (Theorem of Useless Vector) 1.6
9/20 Exercise 1.6
9/20 def. Dependent / Independent 1.7
9/20 ex. Dependent / Independent (Example) 1.7
9/20 Dependent / Independent (Intuitive Explaination) 1.7
9/20 Dependent / Independent v.s. Solution 1.7
9/20 ex. Dependent / Independent v.s. Solution (Example) 1.7
9/20 def. Dependent / Independent (Another Definition) 1.7
9/20 pf. Dependent / Independent v.s. Solution (Proof) 1.7
9/20 Exercise 1.7
9/20 Exercise 1.7.2
9/20 def. Rank / Nullity
9/20 ex. Rank / Nullity (Example 1)
9/20 ex. Rank / Nullity (Example 2)
9/20 ex. Rank / Nullity (Example 3)
9/20 Rank / Nullity v.s. Solution
9/20 Story of Gaussian Elimination (optional) 1.4
9/20 Strategy of Finding Solutions 1.4
9/20 Elementary Row Operation 1.4
9/20 def. REF 1.4
9/20 def. RREF 1.4
9/20 def. Pivot Columns 1.4
9/20 thm. RREF is unique 1.4
9/20 RREF v.s. unique solution 1.4
9/20 RREF v.s. infinite solutions 1.4
9/20 RREF v.s. no solution 1.4
9/20 ~~~~~~ HW1 Released! ~~~~~~ Go to...
9/27 ex. Find RREF (Example 1) 1.4
9/27 ex. Find RREF (Example 1) - Find solution 1.4
9/27 ex. Find RREF (Example 2) 1.4
9/27 ex. Find RREF (Example 3) 1.4
9/27 Exercise 1.4
7 RREF
9/27 thm. Column Correspondence Theorem
9/27 Column Correspondence Theorem - Reason 1
9/27 thm. Ax = 0 and Rx = 0 are equivalent
9/27 Column Correspondence Theorem - Reason 2
9/27 No Row Correspondence Theorem
9/27 How to Check Independence 1.7
9/27 Independence v.s. Column Correspondence Theorem 1.7
9/27 Independence v.s. Matrix Size 1.7
9/27 def. Rank = no. of Pivot Columns = no. of non-zero rows in RREF 1.7
9/27 Independence v.s. Matrix Size (again) 1.7
9/27 def. Rank v.s. Basic / Free Variables 1.7
9/27 🔍 Definitions of Rank and Nullity 1.7
9/27 All properties about always consistent 1.7
9/27 thm. More than m vectors in Rm must be dependent 1.7
9/27 Three is a powerful number :) (optional) 1.7
Chapter 2
DueDate Topic YouTube Textbook PDF PPT
1 matrix multiplication
9/27 Matrix Multiplication: inner product 2.1
9/27 Matrix Multiplication: Combination of Columns 2.1
9/27 Matrix Multiplication: Combination of Rows 2.1
9/27 Matrix Multiplication: Summation of Matrices 2.1
9/27 Block Multiplication 2.1
9/27 ex. Block Multiplication - Example 2.1
9/27 Matrix Multiplication means multiple inputs 2.1
9/27 Matrix Multiplication represents Composition 2.1
9/27 ex. Matrix Multiplication represents Composition - Example 2.1
10/ 4 Matrix Multiplication - Properties 2.1
10/ 4 Matrix Multiplication - Transpose 2.1
10/ 4 Matrix Multiplication - Pratical Computation Issue (optional) 2.1
10/ 4 Exercise 2.1
2 matrix inverse
10/ 4 def. Inverse of Matrix 2.4
10/ 4 Inverse of Matrix - Properties 2.4
10/ 4 Inverse of Matrix - Matrix Transpose 2.4
10/ 4 Inverse of Matrix - Matrix Multiplication 2.4
10/ 4 Inverse of Matrix - Solving System of Linear Equations (optional) 2.4
10/ 4 Inverse of Matrix - Input-output Model 1 (optional) 2.4
10/ 4 Inverse of Matrix - Input-output Model 2 (optional) 2.4
10/ 4 thm. Invertible Matrix Theorem 2.4
10/ 4 Review: one-to-one and onto 2.8
10/ 4 One-to-one in Linear Algebra 2.8
10/ 4 Onto in Linear Algebra 2.8
10/ 4 Invertible = One-to-one and Onto 2.8
10/ 4 pf. Invertible Matrix Theorem - Proof (part 1) 2.4
10/ 4 pf. Invertible Matrix Theorem - Proof (part 2) 2.4
10/ 4 def. Elementary Matrix 2.3
10/ 4 Exercise 2.3
10/ 4 Inverse of Elementary Matrix 2.3
10/ 4 pf. Invertible Matrix Theorem - Proof (part 3) 2.4
10/ 4 Find A-1 (Special Case: 2x2 matrices) (optional) 2.4
10/ 4 Find A-1 2.4
10/ 4 Find A-1C 2.4
10/ 4 Exercise 2.4
10/ 4 ~~~~~~ HW1 Due! ~~~~~~ Go to...
10/ 4 ~~~~~~ HW2 Released! ~~~~~~ Go to...
Chapter 4-(1)
DueDate Topic YouTube Textbook PDF PPT
  subspace
10/ 11 def. Subspace 4.1
10/ 11 ex. Subspace - Example 4.1
10/ 11 Subspace v.s. Span 4.1
10/ 11 Exercise 4.1-1 PDF PPT
10/ 11 Exercise 4.1-2 PDF PPT
10/ 11 def. Column Space and Row Space 4.3
10/ 11 def. Null Space 4.3
10/ 11 def. Basis 4.2
10/ 11 ex. Basis - Example 4.2
10/ 11 thm. More Theorems of Span 4.2
10/ 11 thm. Three Theorems of Basis 4.2
10/ 11 def. Dimension 4.2
10/ 11 More than m vectors in Rm must be dependent (again and again) 4.2
10/ 11 pf. Proof of Basis Theorem 1 - Reduction Theorem 4.2
10/ 11 pf. Proof of Basis Theorem 2 - Extension Theorem 4.2
10/ 11 pf. Proof of Basis Theorem 3 - Dimension 4.2
10/ 11 thm. Dimension v.s. "Size" of Subspace 4.3
10/ 11 🔍 Three Theorems of Basis (review) 4.2
10/ 11 Is it a basis? - Based on Definition 4.2
10/ 11 Is it a basis? - Easier Way 4.2
10/ 11 ex. Is it a basis? - Example 4.2
10/ 11 Exercise 4.2 PDF PPT
10/ 11 Basis and Dimension of Column Space (More definitions of Rank!) 4.3
10/ 11 Basis and Dimension of Row Space (More definitions of Rank!) 4.3
10/ 11 thm. Rank A = Rank AT !!! 4.3
10/ 11 Basis and Dimension of Null Space 4.3
10/ 11 thm. Dimension Theorem 4.3
10/ 18 Exercise 4.3-1 PDF PPT
10/ 18 Exercise 4.3-2 PDF PPT
Chapter 3
DueDate Topic YouTube Textbook PDF PPT
  determinant
10/ 18 Determinant (high school) (optional) 3.1
10/ 18 def. Determinant - Cofactor Expansion 3.1
10/ 18 ex. Determinant of 2x2 and 3x3 matrices 3.1
10/ 18 ex. Determinant of 2x2 and 3x3 matrices 3.1
10/ 18 Determinant of a special gigantic matrix (optional) 3.1
10/ 18 def. Three Basic Properties of Determinant
10/ 18 Basic Property 1
10/ 18 Basic Property 2
10/ 18 Basic Property 3
10/ 18 From Basic Properties to Cofactor Expansion (2x2 matrix) (optional)
10/ 18 From Basic Properties to Cofactor Expansion (3x3 matrix) (optional)
10/ 18 From Basic Properties to Cofactor Expansion (nxn matrix) (optional)
10/ 18 Formula of A-1 (optional)
10/ 18 Formula of A-1 - Example (optional)
10/ 18 Formula of A-1 - Proof (optional)
10/ 18 Cramer’s Rule (optional) 3.2
10/ 18 Three Basic Properties of Determinant (review) (optional) 3.2
10/ 18 thm. A is invertible = det (A) is not zero 3.2
10/ 18 ex. example 3.2
10/ 18 thm. Properties of Determinant 3.2
10/ 18 pf. det(AB) = det(A)det(B) 3.2
10/ 18 pf. det(A) = det (AT) 3.2
10/ 18 Chapter 3 PDF PPT
10/ 18 Review PDF PPT
Chapter 4-(2)
  subspace
11/ 1 def. Coordinate System 4.4
11/ 1 ex. Coordinate System - Example 4.4
11/ 1 莊子齊物論 (optional) 4.4
11/ 1 def. Cartesian Coordinate System 4.4
11/ 1 蓋亞思維 (optional) 4.4
11/ 1 A coordinate system is a basis 4.4
11/ 1 Other system to Cartesian 4.4
11/ 1 Cartesian to Other system 4.4
11/ 1 Change Coordinate 4.4
11/ 1 Equation of ellipse (optional) 4.4
11/ 1 Equation of hyperbola (optional) 4.4
11/ 1 Exercise 4.4 PDF PPT
11/ 1 全面啟動 (optional) 4.5
11/ 1 ex. Describing a function in another coordinate system 4.5
11/ 1 Function in Different Coordinate Systems 4.5
11/ 1 ex. Function in Different Coordinate Systems - Example 4.5
11/ 1 ex. Function in Different Coordinate Systems - Example 4.5
11/ 1 Exercise 4.5 PDF PPT
11/ 1 ~~~~~~ HW2 Due! ~~~~~~ Go to...
11/ 1 ~~~~~~ HW3 Released! ~~~~~~ Go to...
Chapter 5
DueDate Topic YouTube Textbook PDF PPT
  eigenvalues and eigenvectors
11/11 How to find a "good" coordinate system? (optional) 5.1
11/11 def. Eigenvalues and Eigenvectors 5.1
11/11 ex. Example 5.1
11/11 Do the eigenvectors correspond to an eigenvalue from a subspace? 5.1
11/11 def. Eigenspace 5.1
11/11 Check whether a scalar is an eigenvalue 5.1
11/11 ex. Example 5.1
11/11 Looking for Eigenvalues 5.1
11/11 ex. Looking for Eigenvalues - Example 1 5.1
11/15 ex. Looking for Eigenvalues - Example 2 5.1
11/15 ex. Looking for Eigenvalues - Example 3 5.1
11/15 Exercise 5.1 PDF PPT
11/15 def. Characteristic Polynomial 5.2
11/15 Matrix A and RREF of A have different eigenvalues 5.2
11/15 thm. Similar matrices have the same eigenvalues 5.2
11/15 thm. More Properties of Characteristic Polynomial 5.2
11/15 Exercise 5.2-1 PDF PPT
11/15 Exercise 5.2-2 PDF
11/15 PageRank: How does Google rank search results? (optional)
11/15 PageRank: Introduction (optional)
11/15 PageRank: Basic Idea (optional)
11/15 PageRank: Formulation (optional)
11/15 PageRank: Relation to Eigenvectors / Eigenvalues (optional)
11/15 PageRank: Always having eigenvalue = 1 (optional)
11/15 PageRank: When does dimension of eigenspace = 1 (optional)
11/15 PageRank: How to make dimension of eigenspace = 1 (optional)
11/15 PageRank: Power Method (optional)
11/15 ~~~~~~ HW3 Due! ~~~~~~ Go to...
11/15 ~~~~~~ HW4 Released! ~~~~~~ Go to...
11/15 def. Diagonalizable 5.3
11/15 Not all matrices are diagonalizable 5.3
11/15 How to diagonalize a matrix 5.3
11/15 thm. Eigenvectors corresponding to distinct Eigenvalues is independent 5.3
11/15 Find independent eigenvectors 5.3
11/15 ex. Example 5.3
11/15 Test for Diagonalizable Matrix 5.3
11/15 Application of Diagonalization 1: 這就是人生! (optional) 5.3
11/15 Application of Diagonalization 1: 你花了多少時間在念線性代數? (optional) 5.3
11/15 ex. Diagonalization of Linear Operator 5.3
11/15 Application of Diagonalization 2: Find a good Coordinate System 5.3
11/22 Exercise 5.3 PDF
11/22 Chapter 5 PDF
Chapter 7
DueDate Topic YouTube Textbook PDF PPT
  orthogonality
11/22 def. Norm and Distance 7.1
11/22 def. Dot Product and Orthogonal 7.1
11/22 thm. Pythagorean Theorem 7.1
11/22 thm. Dot Product v.s. Geometry 7.1
11/22 thm. Triangle Inequality 7.1
11/22 def. Orthogonal Set 7.2
11/22 Orthogonal Set v.s. Independent Set 7.2
11/22 def. Orthonormal Set 7.2
11/22 def. Orthogonal / Orthonormal Basis 7.2
11/22 thm. Orthogonal Decomposition Theory 7.2
11/22 ex. Example 7.2
11/22 thm. Gram-Schmidt Process 7.2
11/22 ex. Example 7.2
11/22 pf. Proof of Gram-Schmidt Process (1): Obtaining Orthogonal Set 7.2
11/22 pf. Proof of Gram-Schmidt Process (2): Obtaining Basis 7.2
11/22 def. Orthogonal Complement 7.3
11/22 ex. Example 7.3
11/22 thm. B be a basis of W, then B = W 7.3
11/22 ex. How to find W 7.3
11/22 thm. Orthogonal Complement v.s. Null Space 7.3
11/22 thm. u = w + z → w ∈ W, z ∈ W 7.3
11/29 def. Orthogonal Projection 7.4
11/29 thm. Closest Vector Property 7.4
11/29 def. Orthogonal Projection Matrix 7.3
11/29 Orthogonal Projection on a line 7.3
11/29 thm. Orthogonal Projection Matrix 7.3
11/29 pf. Orthogonal Projection Matrix - Proof (part I) 7.3
11/29 pf. Orthogonal Projection Matrix - Proof (part II) 7.3
11/29 Orthogonal Decomposition Theory v.s. Orthogonal Projection Matrix 7.3
11/29 Exercise 7.3 PDF PPT
11/29 Applications of Orthogonal Projection 7.4
11/29 Least Square Approximation - Problem Statement 7.4
11/29 Least Square Approximation - Solving by Orthogonal Projection 7.4
11/29 ex. Least Square Approximation - Example 1 7.4
11/29 ex. Least Square Approximation - Example 2 7.4
11/29 ex. Least Square Approximation - Example 3 7.4
12/ 6 Exercise 7.4 PDF PPT
11/29 def. Orthogonal Matrix 7.5
11/29 def. Norm-preserving 7.5
11/29 Orthogonal Matrix = Norm-preserving 7.5
11/29 thm. Properties of Orthogonal Matrix 7.5
11/29 pf. Properties of Orthogonal Matrix - Proof 7.5
11/29 thm. det Q, PQ, Q⁻¹, Qᵀ 7.5
11/29 Orthogonal Operator (optional) 7.5
12/ 6 Exercise 7.5 PDF PPT
12/ 6 ~~~~~~ HW4 Due! ~~~~~~ Go to...
12/ 6 ~~~~~~ HW5 Released! ~~~~~~ Go to...
12/ 6 symmetric matrices: eigenvalues are always real (2x2 matrices) 7.6
12/ 6 thm. symmetric matrices: eigenvalues are always real (general cases) 7.6
12/ 6 thm. symmetric matrices: eigenvectors for different eigenvalues are orthogonal 7.6
12/ 6 thm. symmetric matrices are diagonalizable 7.6
12/ 6 pf. symmetric matrices are diagonalizable (proof I) 7.6
12/ 6 pf. symmetric matrices are diagonalizable (proof II) 7.6
12/ 6 ex. symmetric matrices are diagonalizable (example) 7.6
12/ 6 ex. symmetric matrices are diagonalizable (example) 7.6
12/ 6 How to diagonalize symmetric matrices 7.6
12/ 6 thm. Spectral Decomposition 7.6
12/ 6 ex. Spectral Decomposition (example) 7.6
12/ 6 Singular Value Decomposition (SVD) (optional) 7.7
12/ 6 SVD v.s. Rank (optional) 7.7
12/ 6 SVD - Low Rank Approximation (optional) 7.7
12/ 6 SVD - Application (optional) 7.7
12/ 6 SVD - proof I (optional) 7.7
12/ 6 SVD - proof II (optional) 7.7
12/ 6 SVD - proof III (optional) 7.7
Chapter 6
DueDate Topic YouTube Textbook PDF PPT
  vector space
12/ 6 原來萬物都是 vector ! 6.1
12/ 6 def. Vector Space 6.1
12/ 6 Revisit Subspace 6.1
12/ 6 Revisit Linear Combination and Span 6.2
12/ 6 ~~~~~~ HW6 Released! ~~~~~~ Go to...
12/ 13 Revisit Linear Transformation 6.2
12/ 13 Isomorphism 6.2
12/ 13 Revisit Basis 6.3
12/ 13 Vector Representation of Object 6.4
12/ 13 Matrix Representation of Linear Operator 6.4
12/ 13 Revisit Eigenvalue and Eigenvector 6.4
12/ 13 def. Inner Product 6.5
12/ 13 ex. Example 6.5
12/ 13 Revisit Orthogonal/Orthonormal Basis 6.5
12/ 13 ex. Example 6.5
12/27 ~~~~~~ HW5 Due! ~~~~~~ Go to...
12/27 ~~~~~~ HW6 Due! ~~~~~~ Go to...
Go to top! 🏠

2023 ESSENCE

Topic
9/06(三) 課程規則說明
9/08(五) 沒有上課
9/15(五) 沒有上課
9/22(五) 公告作業一
9/29(五) 放假
10/06(五) 公告作業二
10/13(五) 期中考複習
10/20(五) 期中考複習
10/27(五) 期中考
11/03(五) 公告作業三
11/10(五) 80分鐘快速全面了解大型語言模型 (PPTX)
11/17(五) 公告作業四
11/24(五) 校慶停課
12/01(五) 公告作業五
12/08(五) 期末考複習
12/15(五) 公告作業六
12/22(五) 期末考